
A Gradient-based Continuous Method for Large-scale

Optimization Problems*

LI-ZHI LIAO1, LIQUN QI2 and HON WAH TAM3

1Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR

China (e-mail: liliao@hkbu.edu.hk)
2Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong (e-mail: maqilq@polyu.edu.hk)
3Department of Computer Science, Hong Kong Baptist University, Kowloon Tong,

Hong Kong, PR China (e-mail: tam@comp.hkbu.edu.hk)

(Received: 30 March 2004; revised and accepted: 1 April 2004)

Abstract. In this paper, we study a gradient-based continuous method for large-scale opti-
mization problems. By converting the optimization problem into an ODE, we are able to

show that the solution trajectory of this ODE tends to the set of stationary points of the
original optimization problem. We test our continuous method on large-scale problems
available in the literature. The simulation results are very attractive.

Key words: Continuous method, Large-scale optimization, Ordinary differential equation

1. Introduction

We are interested in the following unconstrained optimization problem:

min
x2Rn

fðxÞ; ð1Þ

where fðxÞ has continuous first-order derivatives in Rn and n is large, say
nP 106.
The conventional optimization methods for (1) normally generate a

sequence of points, say fxkg, starting at the initial point and ending at a sta-
tionary point of (1). Two common features for this sequence of points are
that: (a) the sequence of points fxkg forms a discrete path from the initial
point to the stationary point; (b) the convergence of this sequence of points is
normally not considered. Instead, the convergence of rfðxkÞ is addressed.
Since 1950s, continuous-path methods have been investigated for the

optimization problem (1). The research in this direction was very active in
the last two decades because of the seminal work of Hopfield’s artificial
neural network [7, 8]. Generally speaking, the key idea in continuous-path

�This research was supported in part by Grants FRG/99-00/II-23 and FRG/00-0l/II-63 of

Hong Kong Baptist University and the Research Grant Council of Hong Kong.

Journal of Global Optimization (2005) 31:271–286 � Springer 2005

methods is first to convert the optimization problem (1) into the following
dynamical system or ordinary differential equation

dxðtÞ
dt
¼ �rfðxðtÞÞ; ð2Þ

then to study the convergence of the solution xðtÞ of the ODE (2). Differ-
ent from the discrete path fxkg generated in conventional optimization
methods, a continuous path xðtÞ, which is the solution of (2), can be
formed. Therefore, these methods are called continuous-path methods, or
simply continuous methods.
The study of continuous methods for optimization involves two steps.

First, how should the ODE or dynamical system be established? In general,
there are many possible ODE systems for an optimization problem. The
ODE (2), which is established based on the steepest descent direction, is
just one of them for problem (1). Second, how should we guarantee that
the solution of the underlying ODE converges to the desired point? This is
a very important and difficult issue. For ODE (2), an equilibrium point is
defined as a point satisfying rfðxÞ ¼ 0. Obviously, any equilibrium point
of (2) corresponds to a stationary point of (1), and vice verse. Thus, the
problem of finding if xðtÞ converges to an equilibrium point of (2) as t
increases becomes a central issue in the continuous method with ODE (2)
for problem (1). In the neural network approach for optimization (see [l4],
a merit function is normally formulated as a companion to ODE (2). One
important requirement for this merit function is that the function must be
monotonically nonincreasing along the trajectory xðtÞ of (2) as t increases.
With the introduction of the merit function, the convergence of the solu-
tion xðtÞ of (2) can be fully investigated in continuous methods. This result
is very attractive theoretically.
The study of gradient-based methods in the form of (2) has been investi-

gated in the literature. In [12], Xia has adopted the same framework for
linear programming problems in which f ðxÞ is a convex and quadratic
function. In [13], a general methodology is provided for establishing a con-
tinuous model which is guaranteed to be globally convergent. Since we are
considering a general function f ðxÞ in (1), some of their conditions (say
Step 2, 2) cannot be met globally. Therefore, their model is not applicable
to the general problem (1). Recently, Han et al. [4] have studied the same
approach of (2) for problem (1). Some strong and globally convergent
results have been obtained. In this paper, we focus on the numerical aspect
of (2) for large-scale optimization problems.
The rest of the paper is organized as follows. In Section 2, a detailed

study on the convergence of the solution xðtÞ of (2) is provided. Some
related properties will also be revealed. Section 3 is devoted to the exten-
sive numerical experiment of solving ODE (2) on large-scale optimization

272 L.-Z. LIAO ET AL.

problems available in the literature. Finally, some concluding remarks will
be drawn in Section 4.

2. Convergence of the ODE Solution

The gradient-based method represented by (2) has been investigated in [4]
for (1). In the convergence proof of xðtÞ, Barbalat’s lemma [11] was used.
But the proof is quite long and complicated in [4]. In this paper, a simpler
proof is provided. Our proof is based on the LaSalle invariant set theorem
under mild assumptions. First, let us make the following assumptions.

ASSUMPTIONS.
(Al) The function fðxÞ has continuous first-order partial derivatives in

Rn. In addition, rfðxÞ is locally Lipschitz continuous.
(A2) For any x0, the level set

Lðx0Þ ¼ fx 2 Rnj f ðxÞO fðx0Þg
is bounded.

THEOREM 1. Under Assumptions (A1) and (A2), for arbitrary to t0 P 0
and x0 2 Rn there exists a unique solution xðtÞ of ODE (2) satisfying xðt0Þ ¼
x0, t 2 ½to;þ1Þ.

Proof. From Assumption (A2), we know that Lðx0Þ is a compact set. From
Assumption (A1) and the Heine–Borel covering theorem, rfðxÞ is Lipschitz continu-
ous in Lðx0Þ. Therefore, Theorem 3.1 in [3] ensures that there exists a unique solu-
tion xðtÞ of (2) for any x0 2 Rn. In addition, it is easy to see that dfðxÞ=dt ¼
�krfðxÞk2 O 0. Therefore, any solution xðtÞ of ODE (2) will stay in Lðx0Þ. Then
xðtÞ can be extended to ½t0;þ1Þ. (

THEOREM 2. Let xðtÞ be the solution of ODE (2) with xðt0Þ ¼ x0 and
Assumptions (A1) and (A2) hold. Then we have the following:

(i)
dfðxðtÞÞ

dt
O 0; 8tP t0 and

dfðxðtÞÞ
dt

¼ 0,rfðxðtÞÞ ¼ 0:

(ii) limt!þ1rfðxðtÞÞ ¼ 0.

(iii) If rfðx0Þ 6¼ 0, then rfðxðtÞÞ 6¼ 0, 8tP t0.

Proof. (i) From (2), we have

dfðxðtÞÞ
dt

¼ �krfðxðtÞÞk2 O 0:

Then (i) holds.
(ii) In Theorem 2, if we let VðxÞ ¼ fðxÞ and dðxÞ ¼ �rfðxÞ, then we have

limt!þ1rfðxðtÞÞ ¼ 0.

A GRADIENT-BASED CONTINUOUS METHODS 273

(iii) In Theorem 3, if we let VðxÞ ¼ fðxÞ and dðxÞ ¼ �rfðxÞ, then we
have that (iii) is true. (

THEOREM 3. Let xðtÞ be the solution of ODE (2) with xðt0Þ ¼ x0 an
Assumptions (A1) and (A2) hold. Then for any initial point x0, the trajectory
xðtÞ of (2), satisfying xðt0Þ ¼ x0, will tend to the set of stationary points of
(1) as t! þ1.

Proof. First, from Theorem 1 the solution of ODE (2) with xðt0Þ ¼ x0 exists
and is unique. From Assumption (A2), the level set Lðx0Þ is bounded. In addition,
Theorem 2 (i) ensures that dfðxÞ=dtO 0. Therefore from Theorem 3.4 (local invari-
ant set theorem) [11] with VðxÞ ¼ fðxÞ and ODE (2), the trajectory xðtÞ of (2), sat-
isfying xðt0Þ ¼ x0, will tend to the set of stationary points of (1) as t! þ1. This
completes the proof. (
A similar result has been obtained in Theorem 4 [4] under a different con-
dition (no Assumption (A2) but requiring rfðxÞ being Lipschitz continu-
ous in Rn). But our proof here is much shorter than the one in [4].
Noticing that there is no matrix involved in (2), if the solution xðtÞ of (2)

can be solved without using any matrix operation, the proposed continuous
method would provide an ideal methodology for large-scale problems.

3. Numerical Results

In order to solve the ODE arisen from Section 2, we utilize the ODE sol-
ver LSODAR [5, 6] from the ODEPACK package of the netlib libraries.
LSODAR solves the initial value problem for stiff or nonstiff systems1 of
first order ODEs of the form

dxðtÞ
dt
¼ FðxðtÞ; tÞ;

xð0Þ ¼ g0;

where xðtÞ ¼ ðx1ðtÞ; . . . ;xnðtÞÞT, and at the same time locates the roots of
any of a set of functions

gj ¼ gðj; t;x1; . . . ; xnÞ; j ¼ 1; . . . ;mg:

This ODE solver is peculiar in that it automatically switches between stiff
and nonstiff methods [10], thus relieving the user from determining whether
the given problem is stiff or not. The code starts from a nonstiff method. It
marches along the time domain t step by step, obtaining a sequence of
vector approximations xk ¼ ðx1k; . . . ; xnkÞ

T to the exact solution of xðtÞ at

1See [2] for a description of stiff and nonstiff ODEs.

274 L.-Z. LIAO ET AL.

time points t1; . . . ; tk; . . . At the k-th step, LSODAR controls the local
error eik of xik by ensuring that

eik O rtoljxikj þ atol; i ¼ 1; . . . ; n

for the user given relative tolerance parameter rtol and absolute tolerance
parameter atol. LSODAR also estimates the step size hkþ1 ¼ tkþ1 � tk for
the next step using an estimated local error eikþ1, i ¼ 1; . . . ; n. Periodically,
if LSODAR determines that switching from a nonstiff method to a stiff
method, or vice versa, will give a much bigger estimated hkþ1 for the next
step than the original method, LSODAR will perform the method switch.
A stiff method is more versatile than a nonstiff method in the sense that

a stiff method is able to solve stiff problems. However, a stiff method pays
a price by requiring the solution of a linear system of the form

I� ha0
@F

@x

� �
y ¼ z ð3Þ

in each step, where a0 is a constant. If @F=@x is dense, Oðn3Þ operations
are required per step to solve the linear system. In addition, the Jacobian
matrix @F=@x takes up n2 storage locations. For some of our test problems
where @F=@x is narrowly banded, improvements can be made and only
OðnÞ operations are required per step for the linear system. The storage
needed for @F=@x in the banded case is also OðnÞ. For comparison, a non-
stiff method needs OðnÞ operations per step, and its storage requirement is
also OðnÞ.
LSODAR has an option for the user to specify whether the @F=@x

involved is full or banded, and whether it is user supplied or numerically
computed internally. Except for problem B15 in our test pool, all the
@F=@x used in our test problems are internally generated by LSODAR.
Depending on the structure of @F=@x, the solution of the linear system

(3) can some times be computed using iterative methods, sparse techniques,
matrix-free techniques and etc. Because this paper intends to demonstrate
the feasibility of converting an optimization problem to an ODE problem,
we do not explore these channels for our test problems.
The root finding capability of LSODAR is suitable for our optimization

method in that it allows for an optimization tolerance. For our application,
we set F ¼ �rfðxðtÞÞ, mg ¼ 1, and

g1 ¼
1:0 if krfðxðtÞÞk1 > d,
0:0 if krfðxðtÞÞk1O d,

�

where d is our tolerance for optimization control. We believe that there is
some relationship between d and the tolerances rtol and atol of the ODE
solver. For a given d, a well chosen set of rtol and atol will reduce the
computation time of the ODE solver. Such a relationship can be studied in

A GRADIENT-BASED CONTINUOUS METHODS 275

a future paper. For the time being, after trial and error, we have chosen
rtol ¼ atol ¼ d and our numerical results appear reasonable.
To examine our method in practice, we select all 27 large-scale prob-

lems from [1] and [9] (see the Appendix). These test problems are divided
into two groups. The first group (problems G1–G12) consists of problems
whose Jacobian matrices @F=@x or Hessian matrices r2

xx fðxÞ are dense,
whereas the second group (problems B1–B15) consists of problems with a
banded @F=@x or D2

xx fðxÞ. Problem G9 of the first group is special in
that its Jacobian is actually banded with a bandwidth n=2. Because of
the relatively wide bandwidth, the banded solver of LSODAR has no
benefit in this case and the dense matrix linear solver is used instead.
Thus problem G9 is included in the first group. (Admittedly, if LSODAR
had an iterative linear solver, this problem would be solved much more
efficiently.)
The numerical results are presented in Tables 1 and 2. A Sun Microsys-

tem E25O work-station with two UltraSPARC 2 CPUs running at
400MHz and 1G main memory is used. The compiler employed is f77.
Each test problem utilizes only a single CPU. For problems where the
Jacobian matrix @F=@x is dense, we limit n to be 8000 so that the resulting
process image takes up 490M of main memory. This process size is about
as big as can be supported by our machine without inducing much disk
swapping when two such problems are run at the same time. For problems
where @F=@x is narrowly banded, n is taken to be 106.
Our test runs also include nonstiff experiments for each test problem.

These experiments are done by modifying LSODAR to disable the
method switch mechanism, so that LSODAR always retains the nonstiff
method. The nonstiff experiments have their merit in that some test
problems are intrinsically nonstiff or mildly stiff within the range of d
we choose. For problems that are nonstiff or mildly stiff, the nonstiff
methods may run faster than the stiff methods because no linear equa-
tion is solved in each step. In 7Tables 1 and 2, the label nonstiff means
running LSODAR with only nonstiff methods, whereas the label stiff

means letting LSODAR switch between nonstiff and stiff methods auto-
matically. Another reason to perform the nonstiff experiments is that a
bigger problem size can sometimes be tested. For some problems where
the stiff experiment limits the problem size n to be 8000, we run the
nonstiff experiments for both n ¼ 8000 and n ¼ 106. The n ¼ 106 runs
are possible because the nonstiff methods do not require storage for the
Jacobian matrix @F=@x.
We have tested each problem with d ¼ 10�2; 10�4; . . . ; 10�8. If a test

does not return within three days, or if LSODAR has completed 60,000
steps in the t-domain without satisfying krfðxðtÞÞk1O d, the test is termi-
nated. We mark these by an � in Tables 1 and 2.

276 L.-Z. LIAO ET AL.

For problems G4 and Gl0, the initial values of krfðxðtÞÞk1 are already
smaller than 10�4. Thus the computation time reported is 0 for both
d ¼ 10�2 and d ¼ 10�4.
Problems G7 and G8 require special treatment in that @F=@x is very stiff

so that the initial stepsize h1 chosen by LSODAR is of the order 10�24.
The computation is so lengthy that LSODAR does not finish after three
days. Our remedy is to use the transformation zj ¼ mjxj, so that

fðzÞ ¼ ðmþ 1Þð2mþ 1Þ
6m

Xn
j¼1

zj

 !2

� ðmþ 1Þ
Xn
j¼1

zj

 !
þm

Table 1. Computation times (in seconds) for test problems with dense @F=@x.

Problem Method n d

10)2 10)4 10)6 10)8

G1 Stiff 8000 2.01 6.60 129080.00 372915.00

Nonstiff 8000 2.04 6.71 45.77 120.86

Nonstiff 106 764.61 2539.30 7128.94 15676.33

G2 Stiff 8000 * * * *

Nonstiff 8000 125.45 * * *

G3 Stiff 8000 * * * *

Nonstiff 8000 3.05 6.06 63.61 *

Nonstiff 106 * * * *

G4 Stiff 8000 0.00 0.00 197937.05 657734.44

Nonstiff 8000 0.00 0.00 3.48 24.40

Nonstiff 106 0.00 0.00 196.08 708.52

G5 Stiff 8000 98008.46 293524.34 637870.31 *

Nonstiff 8000 * * * *

Nonstiff 106 * * * *

G6 Stiff 8000 0.30 0.93 2.27 4.76

Nonstiff 8000 0.30 0.99 2.51 5.27

Nonstiff 106 78.04 267.32 670.68 1403.01

G7 Stiff 8000 43569.23 87193.72 130710.40 171871.23

Nonstiff 8000 0.79 2.11 4.56 8.36

Nonstiff 106 314.02 830.17 * *

G8 Stiff 8000 43497.54 87011.55 130521.93 173990.92

Nonstiff 8000 0.77 2.12 4.61 8.34

Nonstiff 106 317.35 826.80 * *

G9 Stiff 8000 8028.10 15660.60 27264.96 34497.54

Nonstiff 8000 3.95 9.82 21.80 44.23

Nonstiff 106 578.44 1442.80 3236.49 6648.64

G10 Stiff 8000 0.00 0.00 * *

Nostiff 8000 0.00 0.00 3.53 *

Nonstiff 106 0.00 0.00 197.98 851.88

G11 Stiff 8000 70006.52 196008.11 307896.47 433518.66

Nonstiff 8000 7.54 24.93 57.89 117.55

Nonstiff 106 12626.28 57853.62 140071.50 249783.34

G12 Stiff 8000 84603.47 211087.11 306775.31 428840.34

Nonstiff 8000 31.00 556.89 * *

Nonstiff 106 * * * *

A GRADIENT-BASED CONTINUOUS METHODS 277

and

fðzÞ¼2þ 1

m2

ðm�1Þmð2m�1Þ
6

�1

� � Xn�1
j¼2

zj

 !2

þðm�2Þ
m2

Xn�1
j¼2

zj

 !
þm

" #2

� 2

m2

ðm�1Þm
2

�1

� � Xn�1
j¼2

zj

 !2

þm
Xn�1
j¼2

zj

 !2
4

3
5;

respectively for problems G7 and G8.
The solution of problem B15 must also be computed differently because

of the term ðexpðxiþ1 � expðxiÞÞ=ðxiþ1 � xiÞ. This term causes a loss of accu-
racy of the order 1=ðxiþ1 � xiÞ. Consequently, the Jacobian @F=@x numeri-
cally generated by LSODAR suffers a loss of accuracy of order
ð1=ðxiþ1 � xiÞÞ3. In fact, we have tried to ask LSODAR to compute problem

Table 2. Computation times (in seconds) for test problems with dense @F=@x.

Problem Method n d

10)2 10)4 10)6 10)8

B1 Stiff 106 344.96 978.99 2862.04 9491.93

Nonstiff 106 221420.40 78893.29 183793.59 *

B1 Stiff 106 304.82 1149.88 3149.38 8130.51

Nonstiff 106 3661.40 133313.00 * *

B3 Stiff 106 182.14 884.93 2882.07 8175.06

Nonstiff 106 1283.51 * * *

B4 Stiff 106 132.59 412.71 1010.71 2098.95

Nonstiff 106 219.86 623.20 1367.57 2562.01

B5 Stiff 106 234.20 623.45 1408.28 2782.53

Nonstiff 106 225.40 645.28 1443.35 2830.59

B6 Stiff 106 63.63 207.58 513.54 1073.00

Nonstiff 106 63.94 206.63 507.97 1054.57

B7 Stiff 106 592.26 1891.26 5244.41 11781.14

Nonstiff 106 14018.70 * * *

B8 Stiff 106 163.07 2451.60 6499.99 14432.80

Nonstiff 106 601.35 * * *

B9 Stiff 106 287.88 116523.41 334475.50 *

Nonstiff 106 6511.07 * * *

B10 Stiff 106 213.78 681.43 1645.38 3423.48

Nonstiff 106 246.25 681.41 1569.26 3187.38

B11 Stiff 106 406.14 * * *

Nonstiff 106 42.51 * * *

B12 Stiff 106 282.62 1117.27 3157.84 8247.62

Nonstiff 106 387.00 3089.74 * *

B13 Stiff 106 1008.55 2615.83 5578.16 11292.10

Nonstiff 106 * * * *

B14 Stiff 106 5968.29 18298.46 40949.78 104688.27

Nonstiff 106 * * * *

B15 Stiff 106 2323.79 7445.71 18823.09 43998.01

Nonstiff 106 * * * *

278 L.-Z. LIAO ET AL.

B15 like the other problems by internally generating the Jacobian, and we
encounter xi ¼ NaN for d ¼ 10�4. Our remedy is to supply an accurate
@F=@x (in series form) to LSODAR for this problem. For example, the ði; iÞ-
th element of @F=@x is given by

� @f
2

@x2i
¼�4

h
�2hk

2ðexi�exi�1Þ
ðxi�xi�1Þ3

� 2exi

ðxi�xi�1Þ2
þ exi

ðxi�xi�1Þ

"

þ2ðexiþ1� exiÞ
ðxiþ1�xiÞ3

� 2exi

ðxiþ1�xiÞ2
� exi

ðxiþ1�xiÞ

#

¼�4

h
�2hk exi�1

1

3
þ1

4

�
ðxi�xi�1Þþ

1

10
ðxi�xi�1Þ2þ

1

36
ðxi�xi�1Þ3

�

þ 1

168
ðxi�xi�1Þ4þ

1

960
ðxi�xi�1Þ5

�

þ exi
1

3
þ 1

12
ðxiþ1�xiÞþ

1

60
ðxiþ1�xiÞ2þ

1

360
ðxiþ1�xiÞ3

�

þ 1

2520
ðxiþ1�xiÞ4þ

1

20160
ðxiþ1�xiÞ5

��
:

The results reported in Table 2 are computed using the above series form
of @F=@x.
We consider a problem to be successfully solved if either the nonstiff or

stiff method is able to solve it for the four given values of d.
For the problems with a banded Jacobian, Table 2 shows that except for

problems B9 and B11, all test problems are solved for the different values
of d. The nonstiff runs of problems B6 and B10 are slightly faster than the
stiff methods, whereas the stiff runs are better in all the other cases.

4. Concluding Remarks

In this paper, we have reported the numerical results of a gradient-based
continuous methods for 27 large-scale problems. Our results indicate that

(i) For problems with banded Hessian matrices, stiff ODE solvers can
be used and they are effective. For the 15 problems B1–B15, stiff
ODE solvers can solve 14 of them (except B11), and they either out-
perform or are competitive to nonstiff ODE solvers.

(ii) For problems with dense Hessian matrices, nonstiff ODE solvers
are effective for nonstiff problems. For the 12 problems G1–G12,
nonstiff ODE solvers outperform stiff ODE solvers on 11 problems
(except G5).

In addition, we have proved that the solution of the ODE tends to the set
of stationary points of the corresponding optimization problem globally.

A GRADIENT-BASED CONTINUOUS METHODS 279

Appendix: Test Problems

Here, we list all 27 large-scale problems from [1] and [9].

PROBLEM G1. Penalty function I (problem (23) in [9])

fðxÞ ¼
Xn
i¼1

10�5ðxi � 1Þ2 þ
Xn
i¼1

x2i

 !
� 1

4

" #2
;

½x0�i ¼ i:

PROBLEM G2. Penalty function II (modification of problem (24) in [9])

fðxÞ¼ðxl�0:2Þ2þ10�5
Xn
i¼2

exp
xi
m

� �
þexp xi�1

m

� �
�yi

h i2

þ10�5
X2n�1
i¼nþ1

exp
xi�nþ1
m

� �
�exp �1

m

� �� �2
þ

Xn
i¼1
ðn�iþ1Þx2i

" #
�1

 !2

;

yi¼exp
i

m

� �
þexp i�1

m

� �
; ½x0�i¼0:5; m¼

n

10
:

PROBLEM G3. Variable dimensioned function (problem (25) in [9])

fðxÞ ¼
Xn
i¼1
ðxi � 1Þ2 þ

Xn
i¼1

iðxi � 1Þ
" #2

þ
Xn
i¼1

iðxi � 1Þ
" #4

;

½x0�i ¼ 1� i=n; ½x��i ¼ 1; fðx�Þ ¼ 0:

PROBLEM G4. Trigonometric function (problem (26) in [9])

fðxÞ ¼
Xn
i¼1

n�
Xn
j¼1

cos xj þ ið1� cos xiÞ � sin xi

" #2
;

½x0�i ¼ 1=n; fðx�Þ ¼ 0:

PROBLEM G5. Brown almost linear function (problem (27) in [9])

fðxÞ ¼
Xn�1
i¼1

xi þ
Xn
j¼1

xj � ðnþ 1Þ
" #2

þ
Yn
i¼1

xi

 !
� 1

" #2
;

½x0�i ¼ 0:5; x� ¼ ða; . . . ; a; a;1�n ÞT; fðx�Þ ¼ 0;

where a satifies

nan � ðnþ 1Þan�1 þ 1 ¼ 0

in particular

a ¼ 1; fðx�Þ ¼ 1 at x� ¼ ð0; . . . ; 0; nþ 1ÞT:

280 L.-Z. LIAO ET AL.

PROBLEM G6. Discrete integral equation function (problem (29) in [9])

fðxÞ¼
Xn
i¼1

xiþ0:5h½ð1�tiÞ
Xi
j¼1

tjðxjþtjþ1Þ3þti
Xn
j¼iþ1
ð1�tjÞðxjþtjþ1Þ3

" #2
;

where

h ¼ 1

nþ 1
; ti ¼ ih; x0 ¼ xnþ1 ¼ 0;

½x0�i ¼ tiðti � 1Þ; fðx�Þ ¼ 0:

PROBLEM G7. Linear function-rank 1 (problem (33) in [9], with modified
initial values)

fðxÞ ¼
Xm
i¼1

i
Xn
j¼1

jxj

 !
� 1

" #2
ðmP nÞ;

½x0� ¼
1

i
; fðx�Þ ¼ mðm� 1Þ

2ð2mþ 1Þ

any point, where

Xn
j¼1

jxj ¼
3

2mþ 1
:

PROBLEM G8. Linear function-rank 1 with zero columns and rows (prob-
lem (34) in [9], with modified initial values)

fðxÞ ¼ 2þ
Xm�1
i¼2
ði� 1Þ

Xn�1
j¼2

jxj

 !
� 1

" #2
ðmP nÞ;

½x0�i ¼
1

i
; fðx�Þ ¼ m2 þ 3m� 6

2ð2m� 3Þ
at any point, where

Xn�1
j¼2

jxj ¼
3

2m� 3
:

PROBLEM G9. Toint’s 7-diagonal generalization of the Broyden Tridiago-
nal function (problem (14) in [1])

fðxÞ ¼ 1þ
Xn
i¼1
jð3� 2xiÞxi � xi�1 � xiþ1 þ 1jp þ

Xn=2
i¼1
jxi þ xiþn=2jp;

where n is even

A GRADIENT-BASED CONTINUOUS METHODS 281

p ¼ 7

3
and x0 ¼ xnþ1 ¼ 0;

½x0�i ¼ �1:

PROBLEM G10. A trigonometric function (problem (15) in [1])

fðxÞ ¼
Xn
i¼1

nþ i�
Xn
j¼1
ðaij sin xj þ bij cos xjÞ

" #2
;

where

aij ¼ dij; bij ¼ 1þ idij;
½x0�i ¼ 1=n:

PROBLEM G11. A penalty function (problem (18) in [1])

fðxÞ ¼ 1þ
Xn
i¼1

xi þ 103 1�
Xn
i¼1

1=xi

 !2

þ103 1�
Xn
i¼1

i=xi

 !2

;

½x0�i ¼ 1:

PROBLEM G12. A generalization of a function due to A. Brown (problem
(20) in [1])

fðxÞ¼
X
i2J
ðxi�3Þ

" #2
þ
X
i2J
½10�4ðxi�3Þ2�ðxi�xiþ1Þþexpð20ðxi�xiþ1ÞÞ�;

where n is a multiple of 2 and J ¼ f1; 3; 5; . . . ; n� 1g;
x0 ¼ ð0;�1;0;�1; . . . ;0;�1Þ; x� ¼ ð3;3:1498;3;3:1498; . . . ;3;3:1498ÞT:

PROBLEM B1. Extended Rosenbrock function (problem (21) in [9])

fðxÞ ¼
Xn
i¼1
½100ðx2i � x2i�1Þ2 þ ð1� x2i�1Þ2�;

½x0�2i�1 ¼ �1:2; ½x0�2i ¼ 1; ½x��i ¼ 1; fðx�Þ ¼ 0:

PROBLEM B2. Extended Powell singular function (problem (22) in [9])

fðxÞ ¼
Xn
i¼1
½ðx4i�3 þ 10x4i�2Þ2 þ 5ðx4i�1 � x4iÞ2

þ ðx4i�2 � 2x4i�1Þ4 þ 10ðx4i�3 � x4iÞ4�;
½x0�4i�3 ¼ 3; ½x0�4i�2 ¼ �1; ½x0�4i�1 ¼ 0; ½x0�4i ¼ 1;

½x��i ¼ 0; fðx�Þ ¼ 0:

282 L.-Z. LIAO ET AL.

PROBLEM B3. Discrete boundary value function (problem (28) in [9])

fðxÞ ¼
Xn
i¼1
½2xi � xi�l � xiþ1 þ h2ðxi þ ti þ 1Þ3=2�2;

where

h ¼ 1

nþ 1
; ti ¼ ih; x0 ¼ xnþ1 ¼ 0;

½x0�i ¼ tiðti � 1Þ; fðx�Þ ¼ 0:

PROBLEM B4. Broyden tridiagonal function (problem (30) in [9])

fðxÞ ¼
Xn
i¼1
½ð3� 2xiÞxi � xi�1 � 2xiþ1 þ 1�2;

where

x0 ¼ xnþ1 ¼ 0;

½x0�i ¼ �1; fðx�Þ ¼ 0:

PROBLEM B5. Broyden banded function (problem (31) in [9])

fðxÞ ¼
Xn
i¼1
½xið2þ 5x2i Þ þ 1�

X
j2Ji

xjð1þ xjÞ�2;

where

Ji ¼ fj : j 6¼ i;maxð1; i�ml; ÞO jO minðn; iþmuÞg; ml ¼ 5;

mu ¼ 1; ½x0�i ¼ �1; fðx�Þ ¼ 0:

PROBLEM B6. Linear function-full rank (problem (32) in [9])

fðxÞ ¼
Xn
i¼1

xi �
2

m

Xn
j¼1

xj

 !
� 1

" #2
þ
Xm
i¼nþ1

2

m

Xn
j¼1

xj

 !
þ 1

" #2
ðm � nÞ;

½x0�i ¼ 1; ½x��i ¼ �1; fðx�Þ ¼ m� n:

PROBLEM B7. The Chained Singular function (problem (5) in [1])

fðxÞ ¼
X
i2J
½ðxi þ 10xiþ1Þ2 þ 5ðxiþ2 � xiþ3Þ2 þ ðxiþ1 � 2xiþ2Þ4

þ 10ðxi � 10xiþ3Þ4�;
where n is a multiple of 4, and J ¼ f1; 3; 5; . . . ; n� 3g;

½x0�4i�3 ¼ 3; ½x0�4i�2 ¼ �1; ½x0�4i�1 ¼ 0; ½x��i ¼ 0; fðx�Þ ¼ 0:

A GRADIENT-BASED CONTINUOUS METHODS 283

PROBLEM B8. The Generalized Wood function (problem (7) in [1])

fðxÞ ¼ 1þ
X
i2J
½100ðxiþ1 � x2i Þ

2 þ ð1� xiÞ2 þ 90ðxiþ3 � x2iþ2Þ
2

þ ð1� xiþ2Þ2 þ 10ðxiþ1 þ xiþ3 � 2Þ2 þ 0:1ðxiþ1 � xiþ3Þ2�;
where n is a multiple of 4, and J ¼ f1; 5; 9; . . . ; n� 3g;

x0 ¼ ð�3;�1;�3;�1;�2; 0;�2; 0; . . . ;�2; 0ÞT; ½x��i ¼ 1; fðx�Þ ¼ 1:

PROBLEM B9. The Chained Wood function (problem (8) in [1])

fðxÞ ¼ 1þ
X
i2J
½100ðxiþ1 � x2i Þ

2 þ ð1� xiÞ2 þ 90ðxiþ3 � x2iþ2Þ
2

þ ð1� xiþ2Þ2 þ 10ðxiþ1 þ xiþ3 � 2Þ2 þ 0:1ðxiþ1 � xiþ3Þ2�;
where n is a multiple of 4, and J ¼ f1; 3; 5; . . . ; n� 3g;

x0 ¼ ð�3;�1;�3;�1;�2; 0;�2; 0; . . . ;�2; 0ÞT; ½x��i ¼ 1; fðx�Þ ¼ 1:

PROBLEM B10. A generalization of the Broyden Tridiagonal function (problem
(10) in [1])

fðxÞ ¼ 1þ
Xn
i¼1
jð3� 2xiÞxi � xi�1 � xiþ1 þ 1jp

where

p ¼ 7

3
; and x0 ¼ xnþ1 ¼ 0;

½x0�i ¼ �1:

PROBLEM B11. A generalization of the Broyden Banded function (problem (12) in
[1])

fðxÞ ¼ 1þ
Xn
i¼1
jð2þ 5x2i Þxi þ 1þ

X
j2Ji

xjð1þ xjÞjp

where

p ¼ 7

3
; and Ji ¼ fj : maxð1; i� 5Þ � j � minðn; iþ 1Þg;

½x0�i ¼ �1:

PROBLEM B12. A Generalization of the Cragg and Levy function (problem (17)
in [1])

fðxÞ ¼
X
i2J
½ðexpðxiÞ � xiþ1Þ4 þ 100ðxiþ1 � xiþ2Þ6

þ tan4ðxiþ2 � xiþ3Þ þ x8i þ ðxiþ3 � 1Þ2�;

284 L.-Z. LIAO ET AL.

where n is a multiple of 4, and J ¼ f1; 5; 9; . . . ; n� 3g;

x0 ¼ ð1; 2; . . . ; 2ÞT; x� ¼ ð0; 1; 1; 1; . . . ; 0; 1; 1; 1ÞT:

PROBLEM B13. An Augmented Lagrangian function for a generalization
of Hock and Schittkowski’s 80th problem (problem (19) in [1])

fðxÞ ¼ 1þ
X
i2J

��
expðxixiþ1xiþ2xiþ3xiþ4Þ þ

1

2
q

X4
j¼0

x2iþj � 10� k1

 !2
0
@

þðxiþ1xiþ2 � 5xiþ3xiþ4 � k2Þ2 þ ðx3i þ x3iþ1 þ 1� k3Þ2
��
;

where n is a multiple of 5, and J ¼ f1; 6; 11; . . . ; n� 4g:
Here we choose

q ¼ 20; k1 ¼ �0:002008; k2 ¼ �0:001900 and k3 ¼ �0:000261;
x0 ¼ ð�2; 2; 2;�1;�1;�1;�1; 2;�1;�1; . . . ;�1;�1; 2;�1;�1ÞT:

PROBLEM B14. A generalization of another function due to A. Brown
(problem (21) in [1])

fðxÞ ¼
Xn�1
i¼1

�
ðx2i Þ

ðx2
iþ1þ1Þ þ ðx2iþ1Þ

ðx2iþ1Þ
�
;

x0 ¼ ð�1; 1;�1; 1; . . . ;�1; 1ÞT; ½x��i ¼ 0; fðx�Þ ¼ 0:

PROBLEM B15. The discretization of a variational problem (problem (23)
in [1])

fðxÞ ¼ 2
Xn
i¼1
½xiðxi � xiþ1Þ�=hþ 2kh

Xn
i¼0
½ðexpðxiþ1 � expðxiÞÞ=ðxiþ1 � xiÞ�;

where

h ¼ 1

ðnþ 1Þ and x0 ¼ xnþ1 ¼ 0; k ¼ �3:4;

½x0�i ¼ 0:1ihð1� iÞ:

References

1. Conn, A.R., Gould, N.I.M. and Toint, P.L. (1998), Testing a class of methods for solving
minimization problems with simple bounds on the variables,Mathematical Computational,

50, 399–430.

A GRADIENT-BASED CONTINUOUS METHODS 285

2. Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equation,

Prentice Hall, New Jersey.
3. Hale, J.K. (1969), Ordinary Differential Equations, Wiley-Interscience, New York.
4. Han, Q.M., Liao, L.-Z., Qi, H.D. and Qi, L.Q. (2001), Stability analysis of gradient-based

neural networks for optimization problems, Journal of Global Optimization, 19(4), 363–
381.

5. Hiebert, K.L. and Shampine, L.F. (1980), Implicitly defined output points for solutions of

ODEs, Sandia Report SAND80-0180.
6. Hindmarsh, A.C. (1983), ODEPACK, a systematized collection of ODE solvers, In:

R.S. Stepleman et al. (eds), Scientific Computing, North-Holland, Amsterdam, 55–84.

7. Hopfield, J.J. (1982), Neural networks and physical systems with emergent collective
computational ability, Proceedings of the National Academic Science, 79, 2554–2558.

8. Hopfield, J.J. and Tank, D.W. (1985), Neural computation of decisions in optimization
problems, Biological Cybernetics, 52, 141–152.

9. Moré, J. Garbow, B. and Hillstrom, K. (1981), Testing unconstrained, optimization
software, ACM Transactions on Mathematical Software, 7, 17–41.

10. Petzold, L.R. (1983), Automatic selection of methods for solving stiff and nonstiff systems

of ordinary differential equations, SIAM J. Scientific and Statistical Computing, 4, 136–
148.

11. Slotine, J.-J.E. and Li, W. (1991), Applied Nonlinear Control, Prentice-Hall, Englewood

Cliffs, New Jersey.
12. Xia, Y. (1996), A new neural networks for solving linear programming problems and its

application, IEEE Transactions of Neural Network, 7, 525–529.
13. Xia, Y. and Wang, J. (1998), A general methodology for designing globally convergent

optimization neural networks, IEEE Transaction of Neural Network, 9, 1331–1343.
14. Zhang, X.-S. (2000), Neural Network in Optimization, Kluwer Academic Publishers,

Dordrecht.

286 L.-Z. LIAO ET AL.

